站长网_站长创业_站长主页_站长之家_易采站长站

会员投稿 投稿指南 站长资讯通告: python应用Axes3D绘图(批量梯度下降算法)
搜索:
您的位置: 主页 > 教程 > 脚本教程 > python > » 正文

python应用Axes3D绘图(批量梯度下降算法)

来源: 易采站长站

本文实例为大家分享了python批量梯度下降算法的具体代码,供大家参考,具体内容如下

问题:

将拥有两个自变量的二阶函数绘制到空间坐标系中,并通过批量梯度下降算法找到并绘制其极值点

大体思路:

首先,根据题意确定目标函数:f(w1,w2) = w1^2 + w2^2 + 2 w1 w2 + 500
然后,针对w1,w2分别求偏导,编写主方法求极值点
而后,创建三维坐标系绘制函数图像以及其极值点即可

具体代码实现以及成像结果如下:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D

#f(w1,w2) = w1^2 + w2^2 + 2*w1*w2 + 500
def targetFunction(W): #目标函数
 w1,w2 = W
 return w1 ** 2 + w2**2 + 2*w1*w2+500

def gradientFunction(W): #梯度函数:分别对w1,w2求偏导
 w1,w2 = W
 w1_grad = 2*w1+2*w2
 w2_grad = 2*w2 + 2*w1
 return np.array([w1_grad,w2_grad])

def batch_gradient_distance(targetFunc,gradientFunc,init_W,learning_rate = 0.01,tolerance = 0.0000001): #核心算法
 W = init_W
 target_value = targetFunc(W)
 counts = 0 #用于计算次数
 while counts<5000:
 gradient = gradientFunc(W)
 next_W = W-gradient*learning_rate
 next_target_value = targetFunc(next_W)
 if abs(next_target_value-target_value) <tolerance:
 print("此结果经过了", counts, "次循环")
 return next_W
 else:
 W,target_value = next_W,next_target_value
 counts += 1
 else:
 print("没有取到极值点")


if __name__ == '__main__':
 np.random.seed(0) #保证每次运行随机出来的结果一致
 init_W = np.array([np.random.random(),np.random.random()]) #随机初始的w1,w2
 w1,w2 = batch_gradient_distance(targetFunction,gradientFunction,init_W)
 print(w1,w2)
 #画图
 x1=np.arange(-10,11,1) #为了绘制函数的原图像
 x2=np.arange(-10,11,1)

 x1, x2 = np.meshgrid(x1, x2) # meshgrid :3D坐标系

 z=x1**2 + x2**2 + 2*x1*x2+500

 fig = plt.figure()
 ax = Axes3D(fig)
 ax.plot_surface(x1, x2, z) #绘制3D坐标系中的函数图像
 ax.scatter(w1,w2, targetFunction([w1,w2]), s=50, c='red') #绘制已经找到的极值点
 ax.legend() #使坐标系为网格状

 plt.show() #显示

函数以及其极值点成像如下(红点为极值点):

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持易采站长站。

最新图文资讯
1 2 3 4 5 6
易采站长站 - 联系我们 - 广告服务 - 友情链接 - 网站地图 - 版权声明 - 人才招聘 - 帮助 -